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1. Introduction

This paper is concerned with the problem of sorting N items in parallel

on a fixed-connection graph G having N nodes labeled {0,l,... ,N-l} and

constant valence. Each node initially contains one key. The set X of all N

keys is assumed to have a total ordering <. The network sorts by routing each

key xEX to node j=rank(x) where rank(x) is defined as j{x' EXIx' <x}[.

This can be viewed as a distributed packet routing problem. Each xE X is

considered to be an atomic packet that has to be routed from its initial node

to the node corresponding to its rank. Both the rank computation and the packet

routing have to be realized in a completely distributed manner.

We assume that each node contains a single sequential processor with local

storage for O(log N) packets. The processors are regarded as synchronous for

the purpose of step counting, but the algorithm itself does not require it. In

unit time interval a processor may transmit one of its packets along a departing

edge and perform some elementary operation such as a comparison. The processors

are capable of generating random bits of information and hence running

randomized algorithms in the sense of Rabin [91 and Solovay and Strassen [11].

Clearly the routing required to sort may require time at least the diameter

of the graph. If G has constant valence then the diameter is at least Q(log N).

Hence the O(log N) time bound for our algorithm is asymptotically optimal. In

this paper we restrict ourselves to demonstrating that this bound is achievable

in principle and ao not pursue the issue of the magnitude of the constant

multipliers. We note, however, that it is within a large class of algorithms

that is experimentally testable in the sense of (131.

The main components of the algorithm are the splitter directed routing

procedure SDR and the splitter finding procedure SF which itself uses SDR.

They are described and analyzed in Sections 5 and 7 respectively.

IV
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A summary of the algorithm for sorting on the n-dimensional cube connected

cycles network (CCC) of Preparata and Vuillemin [8] is as follows. Note that

the number of nodes is N=n2 n and hence n e log N. (Logarithms are assumed to

have base 2 throughout this paper.)

Step A: Call SF(X). This finds a set of 2n/n
6  elements called "splitters"

that divide X, when regarded as an ordered set, into roughly equal

intervals.

Step B: Route each pacKet to a random node and call SDR(X) with the splitters

found in Step A. This will route the keys belonging to each interval

to the 6 log n dimensional subcube corresponding to it. In this way

an approximate sort is achieved, but the keys are not spread completely

uniformly around the network.

Step C: Compute the rank of each key.

Step D: Route each packet to the node correspondi.g to its rank.

The O(log N) behavior of each of the four steps A-D will be established

respectively as follows: Theorem A (Section 7), Theorem B (Section 5),

Algorithm C (Section 6) and Theorem D (Section 3). We note that Theorem B is

invoked in Step B with n-X =6 logn, which is sufficient for the O(log N)

bound. The following then follows immediately.

Main Theorem. There is a rand ized algorithm that for some k and all n and all

sufficiently large a sorts on an n-dimensional CCC network, and terminates

within kcn steps with probability greater than 1-2

Previous algorithms for sorting N keys on constant valence fixed connection

2
networks of N processors require time Q(log N) . The bitonic sorter of

Batcher [3] achieves this bound on such networks as the CCC [8].

For less realistic models of parallel computation faster algorithms have

been known. For example, J. Wiedermann observed several years ago that the
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Quicksort of Hoare 16] takes time O(log N) with high likelihood on a parallel

decision tree model. Reischuk 110] has a related result for a parallel random

access model.

Our current algorithm follows the randomized routing ideas introduced in

[13]. It can be viewed as a partially successful attempt at reducing the

sorting problem to the apparently simpler problem of routing. In the analysis

the critical path technique developed by Aleliunas [1] and Upfal [12] for

analyzing routing in constant valence graphs plays an important part.
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2. Network Definitions

We define various constant valence networks derived from the n-dimensional

binary hypercube. Consider some fixed n i. Let the node set be

V = {(w,i)wE{Olln, iE{0,...,n-l}

which has cardinality N= n2n. For each aE V let address(a) = w and

stage(a) =i if a = (w,i). Let w[i] be the i-th bit of w. Let w' =EXT(w,i)

be identical to w except that w'[i]3 wfi. Also let w be the integer of

which w is the binary representation.

We call an edge from node a to node b internal if address(a) = address(b)

and external if address (b) = EXT(address (a) ,stage (a) +1 mod n). It is forward if

stage(b) = stage(a) + 1 mod .n, static if stage(b) = stage(a), anid reverse if stage(b) =

.Astage(a)-l)mod n. The CCC network of Preparata and Vulilemin [9] nas node set v and

exactly all forward internal edges, reverse internal edges and static external edges. For

ease of description this paper will assume a network more similar to that of

Upfal 1131 which we call CCC . It contains node set V and all forward and--- n

reverse internal edges and all forward and reverse external edges. Clearly any

algorithm for CCC+  can be simulated on CCC with at most a factor of two time
n n

+
increase. Finally, we define CCC* to be the network obtained by taking a CCC+

n n

and removing all edges that join pairs of nodes with respective stages 0 and n-l.

The significance of CCC* is that numerous copies of it can be found in CCCnM n

if n>m. In particular, for any w1 , w2 such that 1w11 + 1w2 1 = n-m the

subgraph of CCC* spanned by the nodes { (Wlww2 ,i 1 wE{0,I} m  and

JWJ 4i <1w11 +m} is isomorphic to CCCn.n+

Note that CCC , CCC and CCC* are all naturally related to the n-
n n n

dimensional hypercube H . Intuitively, for each wE {O,1 n  the set of nodesn

{a Vladdress(a) =w} can be considered to be a "sul-ernode" of H n . Each such

M
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supernode of H is connected by external edges to n other supernodesn

{bEVLaddress(b) =EXT(w,i) for i=O-l,...,n-l}.

For any m let {0,1} be the set of binary strings of length not more

than m-l. We define a subdivision of the node set V that indexes the subsets

by binary strings from {0,l} < n + l > . For each w E {10,1n let

V[w] ={b Vladdress(b)=w and stage(b)=0}. For each wE{O,l} < n >  let

V[w] ={bEVIw is a prefix of address(b) and Iwi =stage(b)}. Thus V[A] is

the set of nodes of stage zero where X is the empty string. Let root v[w] of

Vyw] be the node with address wOn - 'w ' and stage IwI. Note that for

1w) <n-1, v[w] has a departing forward internal edge entering v[wO] and a

departing forward external edge entering v[wl].
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+
3. Packet Routing on the CCC

n

This section briefly describes the probabilistic packet routing algorithm

of Valiant and Brebner (15] as applied to the CCC+ by Upfal [13].n

We require that each node a EV contain for each Caparting edge e a queue

Qe for the packets that are to be transmitted across edge e. Each node also

contains its address and stage posted as local variables.

Let X be the set of cN packets to be routed, where each packet xE X

is initially at a given node I EV and we wish x to be routed to givenx

destination node Dx EV. The algorithm has two phases:

A. (Random Routing) Route x from I to a node R E V with randomx x

address.

B. (Fixed Destination Routing) Route x from R to D Yx x

ThAe randomn routing of xIn Phanc A~ _J--'" acopi- 1'-y repat-. for

stages the transmission of x across a randomly chosen departing forward edge

(i.e., transmit x across the forward internal edge or forward external edge

with equal probability). Phase B repeats for n stages the following: if x

is currently at node a(D x with j= stage(a) +1 and address(a)[j] =

address (D x ) [j], then x is transmitted across the forward internal edge

departing v and otherwise x is transmitted across the forward external edge

departing v. This takes the packets to nodes with the correct addresses.

Finally, the packets are pipelined to the nodes with correct stage by traversing

internal edges.

We have not yet specified the management of the queues of packets at each

node. Suppose the piority of packet x EX is assigned to be the number of

stages of phases A and B so far accomplished, and we allow packet x to be

transmitted from each node aEV only after all packets of lower priority have

been transmitted from a. Let T., TB be the total execution times of phases A

- i
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and B respectively. The techniques of Aleliunas [I] and Upfal [13] show the

following:

Theorem D. For come c>l for all sufficiently large a

Prob(TA > can) < N-  and Prob(TB > can) <NA B

We note that since the first phase sends packets to random addresses the

probability that, at its completion, there are more than c1an packets at any

one node, or c2 an packets at any address, can be similarly bounded by N-a

(for suitable constants c I and c 2 ).
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4. Some Combinatorial Identities

We shall use the following inequalities. Let exp denote exponentiation of

Euler's constant e.

Fact 4.1. For all x (l+x- ) x<e. For all sufficiently large x>0 (l+x-) x >e(l-1/(2x)).

Let B(m,N,p) be the probability that in N independent Bernoulli trials

with probability p of success there are at least m successes.

Fact 4.2. (Chernoff [4])

exp(-m-Np) if m >Npe2

Fact 4.3. ([2]) If m=Np(l+0) where 0<8(1 then

B(m,Np) < exp(-8 2Np/2)

Fact 4.4. (Hoeffding [7]) If we have N independent Poisson trials with

respective probabilities p 1  " 'PN where Epi =Np and if m;Np +1 is an

integer then the probability of at least m successes is at most B(m,N,p).

Fact 4.5. ([5], p. 18) If n=o(N 2 / 3 ) then

= (1+o(1)) !. exp(-n 2/2N)

Fact 4.6. Suppose x< a, X< A are all functions of n such that Xx =o(A)

and X=o(A 2/3). Let x=aP+G, X=APTG where P= (X +x)/(A+ a), G =o(aP)

and G=o(AP). Then

Proof. Applying Fact 4.5 gives

Y.
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= (1+o(1)) AX exp(-X 2/2A)

and

(A+a < (A+a) X+x exp (- (x2 + 2xX + x2 ) / 2 A )

X+x i (X+x)!

Using Xx =o(A) and applying Stirling's formula to X!, (X+x)! and x! gives

(a) A a+A< (a xAxIX+x X+x

Substituting x=aP +G and X=.AP -G (or x= aP -G and X=AP +G) and

using Fact 4.1 gives the claimed bound. 0

We shall denote by W(l) any function that tends to infihiity as n4)w.

We shall assume that ratios take integral values whenever this is convenient

and otherwise insubstantial.
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5. Splitter Directed Routing

Let X be a set of cN keys that are totally ordered by the relation <.

We assume that each key x EX is initially located at a random node in V[X]

chosen independently of any other key in X-{x. Suppose that we are given a

set of splitters ECX of size IZI =2 £ - 1. We index each splitter Ow] EE

by a distinct binary string wE{0,i} < I >  of length less than X. Let <"

denote the ordering defined as follows: For all w,u,vE{0,1}<k>

wOu<,w<owlv. We require that for all wlw 2 E{O,l1}< > o(w1] <ow 2] iff

wi <*w 2 . We assume that a copy of each splitter c[w] is already available

in each node of V[w].

Let X[X]= X where X is the empty string. Initially we assume that the

keys of X[X are located at V[X, that is the nodes of V having stage zero.

The splitter directed routing is executed in £ temporally overlapping stages

i,l.... -l. For each wE {0,1}' the set of keys Xiw] are all eventually

routed through V[w]. The splitter O[w] partitions X[w] -G[w] into disjoint

subsets

XjwOJ = {xEX[w]Ix<afwl}

and

XwlJ = {xEXfw]jlofw<x}

which are subsequently routed through V[wO] and V[wl] respectively.

Suppose that a key xEX~w] is located at a node aEV[w] with address

ww' and stage i. Let B be the first bit of the address suffix w'. Then

x is transmitted from node a across the departing forward internal edge if

B E (01w] <x), and x is transmitted across the departing forward external

edge otherwise. Thus if x <O[w] then x is transmitted to a node with

address prefix wO, and if o[w] <x then x is transmitted to a node with

prefix wl.
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Note that at any one time distinct keys may be at distinct stages. When

all the keys have completed stage L-i the keys X-Z are partitioned into 2

disjoint su,.ets of the form X[w] where wE{0,1}), and the keys X[w] are

then located within V[w]. The following follows directly from the assumption

that ~w1] <C[w2J if w1 <° w2 :

Lemma 5.1. For any w E, w2E{O,l}X if WI<.W2  then xI<X 2 for all

x1 EX[w11 and x2 EX[w2 .

Also, since each packet is assumed initially to be at a random node and

since the above described splitter directed routing (SDR) procedure does not

modify the last n-1 bits in the address of a packet, we can deduce that:

Lemma 5.2. For each wE{0,l} and each xEX[wl SDR takes x to a random

node in V[w] chosen independently of any other packet.

The SDR procedure can be viewed as a generalization of Phase B of the

routing procedure described in Section 3. It routes packets from random source

nodes to specified destinations such that the number of packets destined for

each region is about the same. The analysis used in the proof is an extension

of the techniques introduced by Aleliunas [1] and Upfal [131 for establishing

good bounds for such constant degree graphs as the CCC and d-way shuffle.

Theorem B. Suppose we have a network cccn with a set X of cn2n packets

n

and a set Z of 2 -1 splitters where n;i>n/2 such that for

t n-iall wE {0,1} IXw] I 2cn2n . Suppose that all the remaining

packets are at independently chosen random nodes of viiJ. If T

is the total time for execution of SDR then for some c2, k >O,

for all sufficiently large a and all c)'l

Prb('cc -<caun n-E 2anProb(T > c 2cn) < 2 +exp(-k.2 n ) •2

.... _ _ _ _ _ _.. .._Iml_ _. ..... .. .
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Proof. First we observe that since the packets are randomly distributed

initially, the probability that some a EVIkl initially contains more than

c(a+l)n keys is less than 2 if a >e . This follows immediately

from Fact 4.2.

Let O = a +1. To each packet we assign a random integer from the set

1,... ,On as its priority. Each packet has probability (en) -  independently

of being assigned any particular such number. In SDR we will insist that no

key be forwarded from a node before all keys of higher priority that ever visit

it have been forwarded. [In practice we simply forward the packets currently

at any node in order of their priority. This will be at least as fast, clearly,

as the hypothesized algorithm that prophesies about future arrivals.]

For each node a and priority lE{O,..., n} let task T = (a,7)

be the job of forwarding all keys of priority w that ever visit node a. Let

a delay be any pair of tasks (T,T 2 ) = ((a,IT),(b,P)) where either a =b and

p= I+ I or (a,b) is an edge of the network and =p. The two cases

correspond to the two ways in which the execution of a task T2 may depend on

the completion of task T . In the first case T2 has to wait for packets of

lower priority to be processed at its node. In the second case T2 has to

wait for the arrival of a packet from an adjacent node.

Let a delay sequence D be a sequence of delays (T0 ,T) ,

(T 1,T2 ), -(T ,TMT ,T ) . Note that d .+Bn since in each delay in

any such sequence either the stage of the node increases by one or the priority

increases by one. Since there are just two possible forward edges of trans-

mission and just one way of increasing the priority, the total number of delay

sequences starting at any one node is at most 3 Hence their total number

is at most 2n 3 n4 25n+2cn
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Let T(D) be the number of time units (i.e., packet transmissions)

involved in D (i.e.. in TOIT1, .... Td). It remains to prove that for some

C4 for all D and all sufficiently large c and 1,

Prob(T(D) >c 4can) < 2-3can-6n

for then the probability that the worst sequence suffers that much delay is

at most

23cn-6n 22tn+5n < 2-cn-n

This is proved under the assumption that there are at most c(c+l)n packets

initially at any node. Since, as has been observed, this event is equally

unlikely the result follows.

To establish the time bound on T(D) consider any particular D and let

T= (a,-,) where stage(a) =i be a task in D. Let P. be the set ot Keys
J 3

that have nonzero probability of being routed through T. (i.e., if their

priority and initial position are suitably chosen) but would then depart from

D at T.. Departure from D occurs either because (t ,T = ((a,f),(a,7T+l))
J j j+l

(since the priority of a packet cannot change) or because (Tj,Tj) =

((a,ir),(b,Tr+l)) but (a,b) is not the edge along which the packet leaves node a.

Note that in the latter case the i-th bit of the destination address of packets

that depart from D at T. is different from those that depart at laterJ

points. It is easily deduced that once the priorities are fixed, the sets

P1 1 P2 ,...Pj...P are pairwise disjoint.

Now P. is just the union of X[w] for various w {0,11t such that w and aJ

agree in the first i bits. By the assumption about the size of X[w] it

follows that IPj I 4 2 cn2n-i-

Let R. be the set of keys that have nonzero probability of being routed
J

through Tjonce the priorities have been decided. Since the priorities are
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determined by Bernoulli trials with probability (sn) - 1 , Fact 4.2 can be used to

give the following bound

Prob (IRJ I > 4c2n-i (Sn) - I ) <exp(-k2n-)

for an appropriate constant k >O. The second term in the theorem follows from

multiplying the above bound by the number of choices of D and j.

Finally, let K. be the actual set of keys that do depart from D at
J

T. because both the priority and the initial positions were appropriately)

chosen. For each such packet the initial position must agree with a in the

last n-i bits. Hence K. is determined by R. Bernoulli trials each with
I )

probability 2i - n  of success. Hence assuming IR9 1 <4cn2 n-i(n)- for each j

we have Bernoulli trials with expectation <4c/$. To upper bound

d

J-1

we appeal to Hoeffdings Theorem (Fact 4.4). We have at most cn2n trials with

mean at most (4c/B) (L+$n) <5cn if a)4. Using Fact 4.2 it follows that

Prot) -K9 > c3 can) < 2-3ca (1)

2if c3 > 5e.

Finally, we have to consider the case of packets being involved in more

than one task of D. This can be done by considering any fixed assignment of

keys to departure points in D and considering the probabilities of repeated

earlier involvement in D. If a key was involved in D at T. then the probability

of a previous involvement at Tj_ 1 is at most one half independent of subsequent

involvements. Hence if a key was involved in D at T. then the probability of tJ

previous involvements (i.e., with Tj_l,...,Tj_ t ) is at most 2-t . It follows that

Prob(T(D))K+s and ZLK=K) <2-S.Prob(lIKjl)K) (2)



From (l) and (2) it follows that if c3ci >5e 
2

Prob(T(D) >2c3con) <.2 1- 3oo



-16-

6. Deterministic Sorting and Ranking

We use as subroutines some known deterministic algorithms. A crucial

step in splitter finding is sorting a sparse subset of elements. For this

we can use the algorithm of Nassimi and Sahni [8].

Theorem NS. For any e >0 N1-  keys can be sorted on a cccn when N =n2n

in time O(n).

Step C of the overall algorithm determines the rank of every element given

that it is "almost" sorted. Suppose that for some v we have that all ele-

ments are in nodes at stage i and for all wI<°w 2, 1wl1 = 1w2 1 = i the

keys in V[w1] are smaller than the keys in V[w 2 1. If i = n then we have

a complete sort except that the elements may not be uniformly distributed

among the stage 0 nodes. In this situation the rank of each key can be

determined by first sorting the keys at each node locally. The global rank

computation is performed on the binary tree that has these nodes as leaves and

consists of all forward internal edges, and just those forward external edges

along which some address bit changes from 0 to 1. The number of keys in each

subcube can be determined recursively by sending these sums from the leaves

toward the root and accumulating at each internal tree node. Finally in a

reverse information flow from the root to the leaves, the range of the ranks

in each subcube can be determined, and hence the ranks of the individual keys.

This all takes O(n) parallel transfers of tokerns that contain only binary

numbers of O(n) digits.

In Step C of the actual algorithm we start with only a partial sort (i.e.,

for all w1 <w 2 with Iwl1 = 1w2l -n-s where s=6 log2n, for all xEV[wI]

and y EV[w 2J , x <y). To find ranks in this situation we determine the rank
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range for each X[w , sort each X[w I ], and finally deduce the rank of each

element. The determination of the rank ranges and final rank is as described

in the above paragraph. With overwhelming probability each X[w will have

at most 2n2 s packets. For sorting X[w1 ] we assign a separate CCCI to

it where t = s + logn- logs. At least if t divides n, one can find

n2n/(t2 2 ) disjoint copies of CCC* in CCC:. The packets are routed to

their appropriate copy of CCC* (Theorem D) and then sorted there by some o(n)
t

method such as Batcher's (see Preparata and Vuillemin [9]) which takes

2
O(log n) . The above described algorithm for ranking the elements given a

partial sort will be called Algorithm C.

,
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7. Splitter Finding

We describe a procedure SF that given a CCC* with c packets at eachn

node finds a subset U of 2 n/n6 packets called "splitters" that divide the

ordered sequence of the cn2n  total packets into intervals that are, with

6+1large probability, all of length smaller than 2cn + . The procedure is

recursive, nested recursive calls corresponding to nested subcubes. At the

i-th level of recursion the splitters found divide the ordered 3equence into

2 n (l- / 2 i ) roughly equal intervals. The subcubes at the i-th level are CCC*
r

where r=n/2 i=O,...,log n-log(26logn)]. At the i-th level a fraction of

about 2-i  of the packets are considered "active". The choice of splitters

at lower levels is restricted to these active elements. In this way the

averaqe density of active packets in each CCC* is kept a constant c inde-

pendent of the cube size. This is necessary for the recursive procedure to

succeed. Any integer greater than or equal to six suffices as a value of 6.

The set U of all splitters found in a run of SFP] will be used in

Step B of the overall sorting procedure.

The procedure SF applied to the subcube with root (w,n-m), where

jw! = n-m, is as follows. When the procedure is called initially with w=X

all the packets are considered active.

Procedure SF(w)

(1) Let Y[w] be the active packets in V[w]. For each xEY[w]

route x to a random node in V[w].

(2) For each wl, Iw,! =m/2+2log n, choose at random an active element

from Vww] . Sort this set S* of n 2 chosen elements using Theorem NS.

Route the j-th largest to address w +j 2m/
2 n2 . Let S the newly created

set of splitters be the packets at addresses w+j2m/2 for j 1,...,2 m /2 _.
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If the splitter is found at address ww and w, = w21w3 where w 3EO then

the splitter is denoted by otww2 ] and routed deterministically to every node

in Vtww 2].

(3) For each x EY[w] -S decide according to a Bernoulli trial with

probability one half whether it is to remain active. Let the active subset

of Y[w] be Z[w].

(4) Apply SDR with the newly found splitters to Z [w].

(5) For each w' with Iw' =m/2 let Y[ww'] be the subset of Z [w]

routed to subcube Vjww'] by (4). For each such w' call in parallel

SF(ww') for Y[ww'] as active elements, unless m=26logn.

We have seen that SDR for CCC r takes time O(r) with overwhelming

probability. Theorem A will establish that if SF is run, with the recursive

calls of SF being allowed to be asynchronous, then the overall algorithm runs

in time O(n) with large probability. The main fact which has to be established

(Theorem 7.2) is that with overwhelming probability, at every call of SDR the

hypotheses of Theorem B are satisfied. We leave it to the reader to verify that

all the other operations performed in a call of SF(w) with Iwi =n-m can be

achieved deterministically, by pipelining if necessary, in time O(m).

First we need a technical lemma:

Lemma 7.1. Given an ordered set T suppose that a set s* of n2 2m/
2 elements

are then chosen from T at randon and s* is then sorted. Let Scs* be the

subset of elements having positions n,2n 2... (2m/
2 -1)n

2  in the ordered set.

Suppose to,... Itf+1 is the longest ordered subsequence of T such that

to ot Es but tI ,if S Then! 'f+l , f..

-1/3 i m/2 -W (1)(i) Prob(f> (l+n-  ) ITI/2' / ) = N

(ii) Prob(f <(l-n- I 3) ITI/2 ) a N- .
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Suppose that a subset YCT-S is chosen bj -erfro *ng independent BernoulZi

trials with probability 1/2. Let y 0 ... 'Yh+l Ve the 1cnost crdered

sequence of Y Us such that yYh+E E s buz Yl ... Yh S. Then

(iii) Prob(h> (l+2n - 1/3) IYIA 2 . 2m/2)) N-W(1)

(iv) Prob(h < (l-2n - I /3) IYI 2 2 m/ 2 )) N- ()

These claims assre that n4 2m/ 2 =o(ITI) vd n2 2m/2 =o(IT1 2/ 3 )

Proof. All choices of S* are equally likely. To prove (i) and (ii) consider

any sequence t o .... tf+ 1  with f= (i±n 3 )ITI/2m/ 2 . Then the probability that

of the n 2
2 m/ 2 members of S* exactly n 2  lie in the above range and the

rest outside is

IT I-f ( Tf) ITI(
2-m/2 2 f2 2 rm/2

Sn2m/2 2 2 n5/3

Applying Fact 4.6 with A= TI , a= f, X=n 2 -n , x=n gives G=n and

an upper bound of

exp (-n4/ 3/2)

provided n4 2m/
2 =o(ITI) and n2 2m/ 2 =o(IT12/3 ). This establishes (i) and (ii)

since there are at most 2 n  choices of tot tf+ 1 and f respectively.

To show (iii) and (iv) it is sufficient to prove that in a sequence of

(1 ±n ~ I / 3 )ITI/ 2 m/ 2 ordered elements of T the probability that the number of

elements chosen to be in Y is outside the range (1 ± 2n - 1 / 3) ITI/ 2 .2m
/ 2  is

negligible. In fact Lemma 4.3 upper bounds this probability by

exp(-n 2/ 3 TI/(4.2M /2 ))

which is bounded above by exp(-n 4 / 3 ) if 2 m/2.n 2= o(T). 0
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Theorem 7.2. In a run of SF(A) the probability of each of the following

events for each recursive call of SF(w) is bounded above by N- (1)

provided m > 12log n.

(a) Step (ii) fails because V[wwI ] has no active packets.

(b) In the call SDR for subcube w with w =n-m, it happens that

Iz[w1 i>2cm2m or I zw1Kcrn2'/2.

(c) In the call SDR for sub.cube w with w=n-m, it happens that

IVjw)I >2cn2m .

Since in a run of SF[] there are at most 3N such events a~tooether the

probabiZity that any such event ever occurs in a ran is therefore aZso c:.tnded

by N-w
(I )

Proof. The proof proceeds by induction on the depth of recursion. We assume

that the Theorem holds down to the current level of recursion and argue that

the probability of "going wrong" at the current call is less than N - (1)

(a) Since the active elements Y[w] have been sent to random nodes in

V[wl the probability that they all miss V[ww ] is

mi- /(m2n2 )cm2 m/2

By Fact 4.1 this is bounded above by

exp(cm2m/
2/(2n2 ))=N

-w( I)

if m;l121og n.

(b) We assume inductively that in the call of SDR at the i-th level of

recursion the set T o felements in the corresponding subcube had size in the

range (l+n- /3)icn2m  (where m=n/2i). Applying Lemma 7.1 (ii) gives that,

at the next level of recursion, the probability of a subcube having more than

(l+n )2 times as many packets is bounded above by N -W (1 )
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Wc) We assume inductively that in the call of SDR at the i-th level of

recursion the set of active elements denoted again by T in the subcube

-1/3 i rn-i
corresponding to w is at most (+ 2n ) cn2 . Then by Lemma 7.1 (iii)

the probability that the number of active elements in a subcube at the (i+l)-st

level call is at most (l+2n -/3) 2-m/2. 2
- I times this quantity, which is

(1+2n-1 /3) i+l cn2m/2- (i+l) as required. a

Theorem A. For alt c there is'a c5  such that for all sufficiently large a

if SF(A) is run on CCCn with c packets per node then
n

Prob(T> c 5 an) <N - 0

Proof. In a run of SF a critical path is a sequence of nested calls of

SF(,X, SF(w ), SF(w W2 ) .... SF where 1w I =n2 - j . The deter-
1 *w * (wlw2 ... wi,..wer wf h dtr

ministic components of each take time proportional to jwi. When summed for

i =,...,log n-log l2log n) this gives an upper bound of O(n) as required.

Hence it remains only to analyze the cumulative probabilistic effects of such

a chain of calls of SDR. Note that these calls are probabilist4A" y inJ- ndent.

Theorem B says that for sufficiently large : a call of SDR on u1 ' . w
I

exceeds runtime c2 On/2 with probability less than

2-an/2

Hence it exceeds runtime c2n/2i + (c-l) c 2 n/21 = c2 n/2' + t i  (say) with

probability less than

-ti/c 22

Hence the probability that such a sequence of nested calls takes time more than

c 2 n +t is less than
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2-ti/c 2  2- t/c 2

Et. =t Ert. =t

-c4 an

for some c4 if t= c2((a - l)n and ct.2. The result follows. a
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